Spot welding is often selected for joining sheet metal fabrications, stampings and assemblies because it is fast, reliable and economical. However, numerous design considerations can affect the quality and cost of the weld, among them: size of the spot weld, accessibility, positioning, materials and thicknesses being joined, and the number of spots needed to attain the desired strength. This section will focus primarily on resistance spot welding (RSW) and resistance projection welding (RPW) since these processes are most commonly used due to their speed and flexibility. See Figure 1, for schematics of RSW and RPW.
If the sheets are the same thickness then the power setting used for plug welding would be the same as you would use for 1.5 times the thickness of one of the sheets. This is the sort of penetration you would expect from a plug weld. The molten pool is just breaking out of the reverse of the back sheet. The heat marks indicate the weld has arced against the back sheet rather than at the side of the hole. If you don’t get these marks then consider a little seam welding just to be sure. There is a special clamp designed for plug welding that makes life really easy. The parts you see in the photograph are attached to a normal mole grip. This clamp came in a set of three random welding clamps all of which are extremely useful.
Where is Spot Welding Used? Spot welding has applications in a number of industries, including automotive, aerospace, rail, white goods, metal furniture, electronics, medical building and construction. Given the ease with which spot welding can be automated when combined with robots and manipulation systems, it is the most common joining process in high volume manufacturing lines and has in particular been the main joining process in the construction of steel cars for over 100 years. Read extra details at Tecna Spot Welder.
To make sure your welding settings are correct, you should carry out a test run using metal offcuts, followed by a destructive test where you separate the welded parts with a hammer and a forked chisel. After separation, a hole must be made in one of the two conjoined sheets – a process known as “unbuttoning” in metalworking jargon – as proof that the settings are right for the metals and thicknesses involved. Apologies for the abstruse technical term! When welding radiators, make sure you also carry out a leak test.