Peripheral nerve regeneration studies by Karim Sarhane today? One-fifth to one-third of patients with traumatic injuries to their arms and legs experience nerve injury, which can be devastating. It can result in muscle weakness or numbness, prevent walking or using the arms, and reduce the ability to perform daily activities. Even with surgery, some nerve injuries never recover, and currently there are not many medical options to address this problem. In 2022, the researchers plan to perform this research on more primates to triple the size of the original group. The study can then move into phase I clinical trials for humans.
Dr. Sarhane is published in top-ranked bioengineering, neuroscience, and surgery journals. He holds a patent for a novel Nanofiber Nerve Wrap that he developed with his colleagues at the Johns Hopkins Institute for NanoBioTechnology and the Johns Hopkins Department of Neuroscience (US Patent # 10500305, December 2019). He is the recipient of many research grants and research awards, including the Best Basic Science Paper at the Johns Hopkins Residents Research Symposium, the Basic Science Research Grant Prize from the American Foundation for Surgery of the Hand, the Research Pilot Grant Prize from the Plastic Surgery Foundation, and a Scholarship Award from the American College of Surgeons. He has authored to date 46 peer-reviewed articles, 11 book chapters, 45 peer-reviewed abstracts, and has 28 national presentations. He is an elected member of the Plastic Surgery Research Council, the American Society for Reconstructive Microsurgery, the American Society for Reconstructive Transplantation, and the American Society for Peripheral Nerves.
Gene delivery targeted to skeletal myocytes has also demonstrated promise as a method of upregulating IGF-1 production in PNI models (Flint et al., 2004; Rabinovsky and Draghia-Akli, 2004; Nagata et al., 2014; Tsai et al., 2016). This approach has been applied both systemically as well as directly to the local site of PNI. Amongst the gene delivery protocols included in Table 2, the work of Nagata et al. (2014) is notable given its use of a biocompatible polyplex nanomicelle as a means of delivering IGF-1 plasmid DNA (pDNA) to the local site of PNI (Nagata et al., 2014). The diverse strategies employed by these systemic GH axis modifiers demonstrate the flexibility with which IGF-1 can potentially be incorporated into future translational approaches. However, these systemic therapeutic approaches are all limited by the resulting systemic upregulation of IGF-1 with the associated risks and side effects as well as the lack of fine control of IGF-1 levels within the target tissues, specifically the injured nerve and denervated muscle.
Recovery by sustained IGF-1 delivery (Karim Sarhane research) : We successfully engineered a nanoparticle delivery system that provides sustained release of bioactive IGF-1 for 20 days in vitro; and demonstrated in vivo efficacy in a translational animal model. IGF-1 targeted to denervated nerve and muscle tissue provides significant improvement in functional recovery by enhancing nerve regeneration and muscle reinnervation while limiting denervation-induced muscle atrophy and SC senescence. Targeting the multimodal effects of IGF-1 with a novel delivery.
Insulin-like growth factor-1 (IGF-1) is a particularly promising candidate for clinical translation because it has the potential to address the need for improved nerve regeneration while simultaneously acting on denervated muscle to limit denervation-induced atrophy. However, like other growth factors, IGF-1 has a short half-life of 5 min, relatively low molecular weight (7.6 kDa), and high water-solubility: all of which present significant obstacles to therapeutic delivery in a clinically practical fashion (Gold et al., 1995; Lee et al., 2003; Wood et al., 2009). Here, we present a comprehensive review of the literature describing the trophic effects of IGF-1 on neurons, myocytes, and SCs. We then critically evaluate the various therapeutic modalities used to upregulate endogenous IGF-1 or deliver exogenous IGF-1 in translational models of PNI, with a special emphasis on emerging bioengineered drug delivery systems. Lastly, we analyze the optimal dosage ranges identified for each mechanism of IGF-1 with the goal of further elucidating a model for future clinical translation.
Insulin-like growth factor-1 (IGF-1) is a particularly promising candidate for clinical translation because it has the potential to address the need for improved nerve regeneration while simultaneously acting on denervated muscle to limit denervation-induced atrophy. However, like other growth factors, IGF-1 has a short half-life of 5 min, relatively low molecular weight (7.6 kDa), and high water-solubility: all of which present significant obstacles to therapeutic delivery in a clinically practical fashion (Gold et al., 1995; Lee et al., 2003; Wood et al., 2009). Here, we present a comprehensive review of the literature describing the trophic effects of IGF-1 on neurons, myocytes, and SCs. We then critically evaluate the various therapeutic modalities used to upregulate endogenous IGF-1 or deliver exogenous IGF-1 in translational models of PNI, with a special emphasis on emerging bioengineered drug delivery systems. Lastly, we analyze the optimal dosage ranges identified for each mechanism of IGF-1 with the goal of further elucidating a model for future clinical translation.